R/sperrorest.R
sperrorest.Rd
sperrorest is a flexible interface for multiple types of parallelized spatial and non-spatial cross-validation and bootstrap error estimation and parallelized permutation-based assessment of spatial variable importance.
sperrorest(
formula,
data,
coords = c("x", "y"),
model_fun,
model_args = list(),
pred_fun = NULL,
pred_args = list(),
smp_fun = partition_cv,
smp_args = list(),
train_fun = NULL,
train_param = NULL,
test_fun = NULL,
test_param = NULL,
err_fun = err_default,
imp_variables = NULL,
imp_permutations = 1000,
imp_sample_from = c("test", "train", "all"),
importance = !is.null(imp_variables),
distance = FALSE,
do_gc = 1,
progress = "all",
benchmark = FALSE,
mode_rep = c("future", "sequential", "loop"),
mode_fold = c("sequential", "future", "loop"),
verbose = 0
)
A formula specifying the variables used by the model
. Only
simple formulas without interactions or nonlinear terms should be used,
e.g. y~x1+x2+x3
but not y~x1*x2+log(x3)
. Formulas involving interaction
and nonlinear terms may possibly work for error estimation but not for
variable importance assessment, but should be used with caution.
The formula y~...
is not supported, but y~1
(i.e. no predictors) is.
a data.frame
with predictor and response variables. Training
and test samples will be drawn from this data set by train_fun
and
test_fun
, respectively.
vector of length 2 defining the variables in data
that
contain the x and y coordinates of sample locations.
Function that fits a predictive model, such as glm
or
rpart
. The function must accept at least two arguments, the first one
being a formula and the second a data.frame with the learning sample.
Arguments to be passed to model_fun
(in addition to the
formula
and data
argument, which are provided by sperrorest)
Prediction function for a fitted model object created by
model
. Must accept at least two arguments: the fitted object
and a
data.frame
newdata
with data on which to predict the outcome.
(optional) Arguments to pred_fun
(in addition to the
fitted model object and the newdata
argument, which are provided by
sperrorest).
A function for sampling training and test sets from data
.
E.g. partition_kmeans for spatial cross-validation using spatial
k-means clustering.
(optional) Arguments to be passed to smp_fun
.
(optional) A function for resampling or subsampling the training sample in order to achieve, e.g., uniform sample sizes on all training sets, or maintaining a certain ratio of positives and negatives in training sets. E.g. resample_uniform or resample_strat_uniform.
(optional) Arguments to be passed to resample_fun
.
(optional) Like train_fun
but for the test set.
(optional) Arguments to be passed to test_fun
.
A function that calculates selected error measures from the
known responses in data
and the model predictions delivered by
pred_fun
. E.g. err_default (the default).
(optional; used if importance = TRUE
). Variables for
which permutation-based variable importance assessment is performed. If
importance = TRUE
and imp_variables
== NULL
, all variables in
formula
will be used.
(optional; used if importance = TRUE
). Number of
permutations used for variable importance assessment.
(default: "test"
): specified if the permuted feature
values should be taken from the test set, the training set (a rather unlikely
choice), or the entire sample ("all"
). The latter is useful in
leave-one-out resampling situations where the test set is simply too small
to perform any kind of resampling. In any case importances are
always estimates on the test set. (Note that resampling with replacement is
used if the test set is larger than the set from which the permuted values
are to be taken.)
logical (default: FALSE
): perform permutation-based
variable importance assessment?
logical (default: FALSE
): if TRUE
, calculate mean
nearest-neighbour distances from test samples to training samples using
add.distance.represampling.
numeric (default: 1): defines frequency of memory garbage
collection by calling gc; if < 1
, no garbage collection; if >= 1
, run
a gc after each repetition; if >= 2
, after each fold.
character (default: all
): Whether to show progress
information (if possible). Default shows repetition, fold and (if enabled)
variable importance progress. Set to "rep"
for repetition information
only or FALSE
for no progress information.
(optional) logical (default: FALSE
): if TRUE
, perform
benchmarking and return sperrorestbenchmark
object.
character (default: "future"
and "sequential"
,
respectively): specifies whether to parallelize the execution at the repetition
level, at the fold level, or not at all.
Parallel execution uses future.apply::future_lapply()
(see details below).
It is only possible to parallelize at the repetition level or at
the fold level.
The "loop"
option uses a for
loop instead of an lappy
function; this option is for debugging purposes.
Controls the amount of information printed while processing. Defaults to 0 (no output).
A list (object of class sperrorest) with (up to) six components:
error_rep: sperrorestreperror
containing
predictive performances at the repetition level
error_fold: sperroresterror
object containing predictive
performances at the fold level
represampling: represampling object
importance: sperrorestimportance
object containing
permutation-based variable importances at the fold level
benchmark: sperrorestbenchmark
object containing
information on the system the code is running on, starting and
finishing times, number of available CPU cores and runtime performance
package_version: sperrorestpackageversion
object containing
information about the sperrorest package version
Custom predict functions passed to pred_fun
, which consist of
multiple child functions, must be defined in one function.
Running in parallel is supported via package future.
Have a look at vignette("future-1-overview", package = "future")
.
In short: Choose a backend and specify the number of workers, then call
sperrorest()
as usual. Example:
future::plan(future.callr::callr, workers = 2)
sperrorest()
Parallelization at the repetition is recommended when using repeated cross-validation. If the 'granularity' of parallelized function calls is too fine, the overall runtime will be very poor since the overhead for passing arguments and handling environments becomes too large. Use fold-level parallelization only when the processing time of individual folds is very large and the number of repetitions is small or equals 1.
Note that nested calls to future
are not possible.
Therefore a sequential sperrorest
call should be used for
hyperparameter tuning in a nested cross-validation.
Brenning, A. 2012. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package 'sperrorest'. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 23-27 July 2012, p. 5372-5375. https://ieeexplore.ieee.org/document/6352393
Brenning, A. 2005. Spatial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards and Earth System Sciences, 5(6), 853-862. doi:10.5194/nhess-5-853-2005
Brenning, A., S. Long & P. Fieguth. 2012. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sensing of Environment, 125, 227-237. doi:10.1016/j.rse.2012.07.005
Russ, G. & A. Brenning. 2010a. Data mining in precision agriculture: Management of spatial information. In 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010; Dortmund; 28 June - 2 July 2010. Lecture Notes in Computer Science, 6178 LNAI: 350-359.
Russ, G. & A. Brenning. 2010b. Spatial variable importance assessment for yield prediction in Precision Agriculture. In Advances in Intelligent Data Analysis IX, Proceedings, 9th International Symposium, IDA 2010, Tucson, AZ, USA, 19-21 May 2010. Lecture Notes in Computer Science, 6065 LNCS: 184-195.
## ------------------------------------------------------------
## Classification tree example using non-spatial partitioning
## ------------------------------------------------------------
# Muenchow et al. (2012), see ?ecuador
fo <- slides ~ dem + slope + hcurv + vcurv + log.carea + cslope
library(rpart)
mypred_part <- function(object, newdata) predict(object, newdata)[, 2]
ctrl <- rpart.control(cp = 0.005) # show the effects of overfitting
# show the effects of overfitting
fit <- rpart(fo, data = ecuador, control = ctrl)
### Non-spatial cross-validation:
mypred_part <- function(object, newdata) predict(object, newdata)[, 2]
nsp_res <- sperrorest(
data = ecuador, formula = fo,
model_fun = rpart,
model_args = list(control = ctrl),
pred_fun = mypred_part,
progress = TRUE,
smp_fun = partition_cv,
smp_args = list(repetition = 1:2, nfold = 3)
)
#> Tue Jan 21 04:22:49 2025 Repetition 1
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 1
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 2
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 3
#> Tue Jan 21 04:22:49 2025 Repetition 2
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 1
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 2
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 3
summary(nsp_res$error_rep)
#> mean sd median IQR
#> train_auroc 0.8413531 0.0002190341 0.8413531 0.0001548805
#> train_error 0.1917443 0.0018831073 0.1917443 0.0013315579
#> train_accuracy 0.8082557 0.0018831073 0.8082557 0.0013315579
#> train_sensitivity 0.8855000 0.0120208153 0.8855000 0.0085000000
#> train_specificity 0.6543825 0.0295801642 0.6543825 0.0209163347
#> train_fpr70 0.2051793 0.0140857925 0.2051793 0.0099601594
#> train_fpr80 0.2559761 0.0042257377 0.2559761 0.0029880478
#> train_fpr90 0.3954183 0.0042257377 0.3954183 0.0029880478
#> train_tpr80 0.6990000 0.0268700577 0.6990000 0.0190000000
#> train_tpr90 0.4380000 0.0212132034 0.4380000 0.0150000000
#> train_tpr95 0.2870000 0.0141421356 0.2870000 0.0100000000
#> train_events 1000.0000000 0.0000000000 1000.0000000 0.0000000000
#> train_count 1502.0000000 0.0000000000 1502.0000000 0.0000000000
#> test_auroc 0.5913347 0.0145196349 0.5913347 0.0102669323
#> test_error 0.3741678 0.0000000000 0.3741678 0.0000000000
#> test_accuracy 0.6258322 0.0000000000 0.6258322 0.0000000000
#> test_sensitivity 0.7420000 0.0169705627 0.7420000 0.0120000000
#> test_specificity 0.3944223 0.0338059019 0.3944223 0.0239043825
#> test_fpr70 0.5517928 0.0084514755 0.5517928 0.0059760956
#> test_fpr80 0.6812749 0.0225372679 0.6812749 0.0159362550
#> test_fpr90 0.8705179 0.0366230604 0.8705179 0.0258964143
#> test_tpr80 0.2720000 0.0678822510 0.2720000 0.0480000000
#> test_tpr90 0.1590000 0.0183847763 0.1590000 0.0130000000
#> test_tpr95 0.0920000 0.0056568542 0.0920000 0.0040000000
#> test_events 500.0000000 0.0000000000 500.0000000 0.0000000000
#> test_count 751.0000000 0.0000000000 751.0000000 0.0000000000
summary(nsp_res$error_fold)
#> mean sd median IQR
#> train.auroc 0.83743699 0.02048053 0.8333183 0.033646385
#> train.error 0.19173586 0.01438586 0.1967984 0.014375250
#> train.accuracy 0.80826414 0.01438586 0.8032016 0.014375250
#> train.sensitivity 0.88544232 0.03107595 0.8810630 0.039594807
#> train.specificity 0.65315955 0.07978799 0.6303327 0.123423546
#> train.fpr70 0.21096473 0.03745328 0.2102482 0.039804792
#> train.fpr80 0.26678331 0.04197401 0.2696150 0.055188199
#> train.fpr90 0.41645165 0.05634835 0.4302107 0.027201786
#> train.tpr80 0.67328390 0.09501731 0.7081574 0.136802093
#> train.tpr90 0.42606490 0.02625749 0.4288201 0.038100185
#> train.tpr95 0.24519417 0.10272755 0.2306974 0.135858369
#> train.events 333.33333333 6.47044563 334.0000000 5.750000000
#> train.count 500.66666667 0.51639778 501.0000000 0.750000000
#> test.auroc 0.59363657 0.03339583 0.5821419 0.002435316
#> test.error 0.37417530 0.02708388 0.3712590 0.010470120
#> test.accuracy 0.62582470 0.02708388 0.6287410 0.010470120
#> test.sensitivity 0.74203609 0.03728947 0.7396495 0.067245950
#> test.specificity 0.39550360 0.06362015 0.4024297 0.088476560
#> test.fpr70 0.56470600 0.04071028 0.5440798 0.046597213
#> test.fpr80 0.72560279 0.05383697 0.7249146 0.046820219
#> test.fpr90 0.85173443 0.03938630 0.8563455 0.020751291
#> test.tpr80 0.23524330 0.11922537 0.2271224 0.108842594
#> test.tpr90 0.12384858 0.07164059 0.1309382 0.038435952
#> test.tpr95 0.06825989 0.07977265 0.0511169 0.059644324
#> test.events 166.66666667 6.47044563 166.0000000 5.750000000
#> test.count 250.33333333 0.51639778 250.0000000 0.750000000
#> distance -1.00000000 0.00000000 -1.0000000 0.000000000
summary(nsp_res$represampling)
#> $`1`
#> n.train n.test
#> 1 500 251
#> 2 501 250
#> 3 501 250
#>
#> $`2`
#> n.train n.test
#> 1 501 250
#> 2 501 250
#> 3 500 251
#>
# plot(nsp_res$represampling, ecuador)
### Spatial cross-validation:
sp_res <- sperrorest(
data = ecuador, formula = fo,
model_fun = rpart,
model_args = list(control = ctrl),
pred_fun = mypred_part,
progress = TRUE,
smp_fun = partition_kmeans,
smp_args = list(repetition = 1:2, nfold = 3)
)
#> Tue Jan 21 04:22:49 2025 Repetition 1
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 1
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 2
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 3
#> Tue Jan 21 04:22:49 2025 Repetition 2
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 1
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 2
#> Tue Jan 21 04:22:49 2025 Repetition - Fold 3
summary(sp_res$error_rep)
#> mean sd median IQR
#> train_auroc 0.8472530 0.017474834 0.8472530 0.012356574
#> train_error 0.1820905 0.002353884 0.1820905 0.001664447
#> train_accuracy 0.8179095 0.002353884 0.8179095 0.001664447
#> train_sensitivity 0.8905000 0.009192388 0.8905000 0.006500000
#> train_specificity 0.6733068 0.011268634 0.6733068 0.007968127
#> train_fpr70 0.1842629 0.029580164 0.1842629 0.020916335
#> train_fpr80 0.2370518 0.011268634 0.2370518 0.007968127
#> train_fpr90 0.3555777 0.012677213 0.3555777 0.008964143
#> train_tpr80 0.7360000 0.053740115 0.7360000 0.038000000
#> train_tpr90 0.4845000 0.067175144 0.4845000 0.047500000
#> train_tpr95 0.2660000 0.024041631 0.2660000 0.017000000
#> train_events 1000.0000000 0.000000000 1000.0000000 0.000000000
#> train_count 1502.0000000 0.000000000 1502.0000000 0.000000000
#> test_auroc 0.5032968 0.024889595 0.5032968 0.017599602
#> test_error 0.4727031 0.028246609 0.4727031 0.019973369
#> test_accuracy 0.5272969 0.028246609 0.5272969 0.019973369
#> test_sensitivity 0.5470000 0.032526912 0.5470000 0.023000000
#> test_specificity 0.4880478 0.019720109 0.4880478 0.013944223
#> test_fpr70 0.7529880 0.061977487 0.7529880 0.043824701
#> test_fpr80 0.8884462 0.056343170 0.8884462 0.039840637
#> test_fpr90 0.9282869 0.000000000 0.9282869 0.000000000
#> test_tpr80 0.1610000 0.004242641 0.1610000 0.003000000
#> test_tpr90 0.0990000 0.007071068 0.0990000 0.005000000
#> test_tpr95 0.0650000 0.018384776 0.0650000 0.013000000
#> test_events 500.0000000 0.000000000 500.0000000 0.000000000
#> test_count 751.0000000 0.000000000 751.0000000 0.000000000
summary(sp_res$error_fold)
#> mean sd median IQR
#> train.auroc 0.84515941 0.01905839 0.84534979 0.028026750
#> train.error 0.18240710 0.01060702 0.18304622 0.009904172
#> train.accuracy 0.81759290 0.01060702 0.81695378 0.009904172
#> train.sensitivity 0.88941674 0.01990945 0.88819737 0.018551212
#> train.specificity 0.67338381 0.03405612 0.67399773 0.033408639
#> train.fpr70 0.19001989 0.02696925 0.18629168 0.035076259
#> train.fpr80 0.26077121 0.03429704 0.25571965 0.040338724
#> train.fpr90 0.38765695 0.03869441 0.38784530 0.057629711
#> train.tpr80 0.69871754 0.06961726 0.71852900 0.077197624
#> train.tpr90 0.38222915 0.12415524 0.37383597 0.127049184
#> train.tpr95 0.24811503 0.08804794 0.21752928 0.118033864
#> train.events 333.33333333 44.88503834 326.50000000 50.500000000
#> train.count 500.66666667 52.87217290 490.00000000 65.500000000
#> test.auroc 0.52865230 0.04745692 0.53136288 0.078210920
#> test.error 0.46155050 0.07803414 0.43884387 0.080997314
#> test.accuracy 0.53844950 0.07803414 0.56115613 0.080997314
#> test.sensitivity 0.58378570 0.19028544 0.64871054 0.191650843
#> test.specificity 0.47751069 0.16408495 0.45386905 0.161617488
#> test.fpr70 0.74420320 0.12039194 0.75586762 0.182721973
#> test.fpr80 0.84903452 0.12630703 0.87089783 0.074518397
#> test.fpr90 0.96263035 0.03429537 0.95823650 0.044154776
#> test.tpr80 0.15410646 0.07515119 0.15269750 0.066471765
#> test.tpr90 0.10004200 0.06560359 0.12034188 0.094070539
#> test.tpr95 0.04934735 0.07259254 0.01269036 0.075709340
#> test.events 166.66666667 44.88503834 173.50000000 50.500000000
#> test.count 250.33333333 52.87217290 261.00000000 65.500000000
#> distance -1.00000000 0.00000000 -1.00000000 0.000000000
summary(sp_res$represampling)
#> $`1`
#> n.train n.test
#> 1 498 253
#> 2 573 178
#> 3 431 320
#>
#> $`2`
#> n.train n.test
#> 1 482 269
#> 2 469 282
#> 3 551 200
#>
# plot(sp_res$represampling, ecuador)
smry <- data.frame(
nonspat_training = unlist(summary(nsp_res$error_rep,
level = 1
)$train_auroc),
nonspat_test = unlist(summary(nsp_res$error_rep,
level = 1
)$test_auroc),
spatial_training = unlist(summary(sp_res$error_rep,
level = 1
)$train_auroc),
spatial_test = unlist(summary(sp_res$error_rep,
level = 1
)$test_auroc)
)
boxplot(smry,
col = c("red", "red", "red", "green"),
main = "Training vs. test, nonspatial vs. spatial",
ylab = "Area under the ROC curve"
)